Berkeley County Continuing EducationSCDOT Traffic Management

Josh Johnson, PE, PTOE March 19, 2019

Josh Johnson is the District Six Traffic Engineer for SCDOT, overseeing traffic operations and design for Berkeley, Charleston, Dorchester, Colleton, Beaufort, and Jasper Counties. He holds Bachelor's and Master's degrees in civil engineering from Clemson University, is a registered Professional Engineer (PE) and Professional Traffic Operations Engineer (PTOE) and has ten years of experience in the private and public sectors. Josh is a resident of Goose Creek with his wife, Jenna, and two children, and is the Chairman of the City of Goose Creek Planning Commission

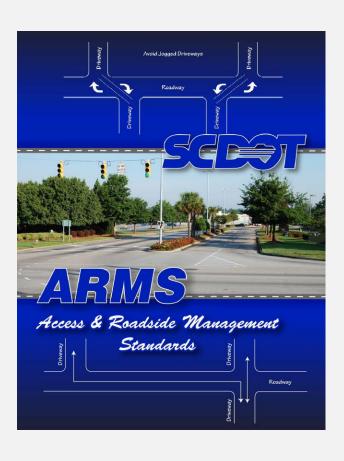
Discussion Items

- Encroachment permitting process
- Traffic Impact Study requirements
- Traffic mitigation
- Agency coordination

Encroachment Permitting

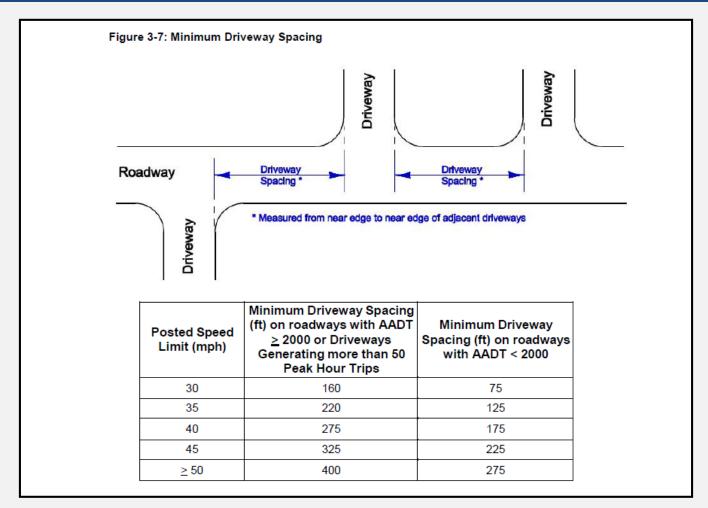
- Online applications (EPPS)
- District permit office vs. county permit office

Application Checklist

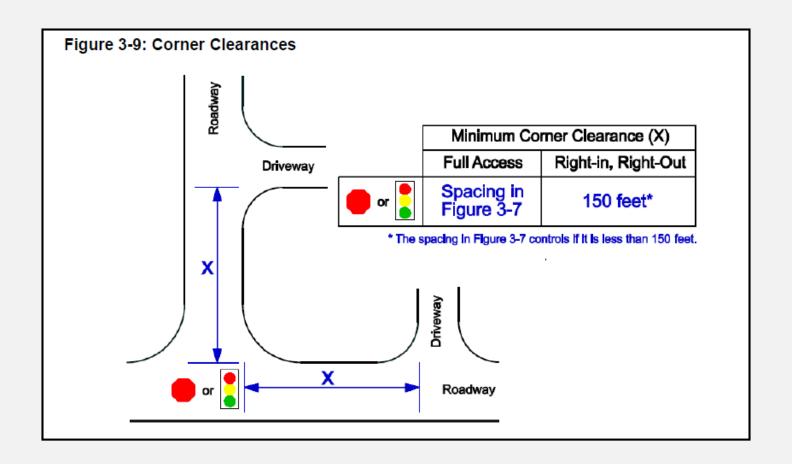


The following checklist is provided as a tool to verify that all necessary documentation is included in your submittal. Once complete, upload this certification into the Encroachment Permit Processing System (EPPS) as a required document to submit your Application.

- Signed Permit Application The Applicant is required to input their information, print, sign, and upload the document as a pdf into EPPS. Agent Authorization Letter (Section 2A, ARMS).
- Signed application
- Construction plans
 - Dimensions of design elements
 - Pavements markings
 - Signing
 - Pavement design
 - Drainage
 - Sight distance

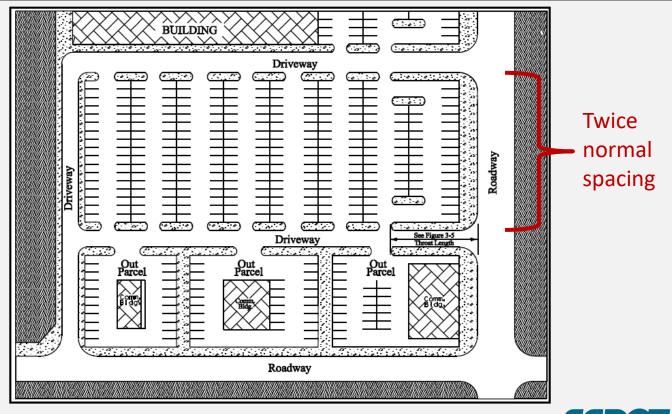

- Drainage analysis
- Approved traffic study
- Local government approval
- DHEC approval

ARMS Manual



- On SCDOT website
- Information provided
 - Driveway spacing
 - Driveway radii
 - Driveway profile
 - Throat distance
 - Turn lane design
 - Signal spacing
 - Traffic impact studies
 - Sight distance
 - Etc., etc., etc.

Driveway Spacing - Full



Driveway Spacing - RIRO

Driveway Spacing – Large Parcels

In the case of large developments with outparcels, access for outparcels should be provided only internally; however, shared or individual driveways may be permitted provided that **twice the normal spacing** requirements are met.

Evaluating Access

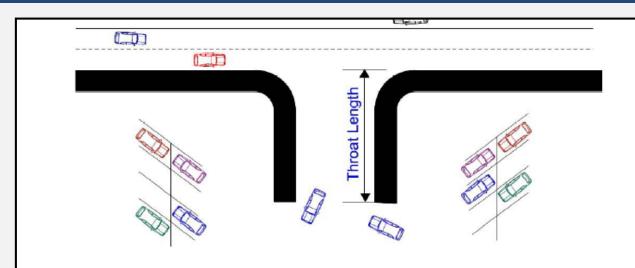
- Must provide access to state system
- May be right-in / right-out only
- Driveway spacing / alignment
- Avoid access within turn lanes
- Mitigation needs (turn lanes)
- Sight distance
- Master corridor planning

Driveway Radius & Width

	Table 3-3: Driveway Classification				
	Driveway Classification	Expected Trips	Example Land Use	Design Features	
	Low Volume	1-20 trips/day	Residential Drives (1-2	Typically designed with	
		1-5 trips/hour	single family homes)	minimum requirements.	
	Medium Volume	21-600 trips/day	Small subdivisions with single family homes or	Typically designed with some higher volume	
		6-60 trips/hour	apartments, small business or specialty shop	features such as radial returns.	
	High Volume	601-4,000 trips/day Convenience store, gas stations, or small shopping	high volume features such as radial returns and turn		
		61-400 trips/hour	r center as radial returns a lanes.		
	Major Volume	>4,000 trips/day	Large shopping center or	Designed with high volume features including radial	
	major volume	>400 trips/hour	regional mall	returns, turn lanes, and medians.	

Driveway Radius & Width

Table 3-4: Driveway Widths and Radii

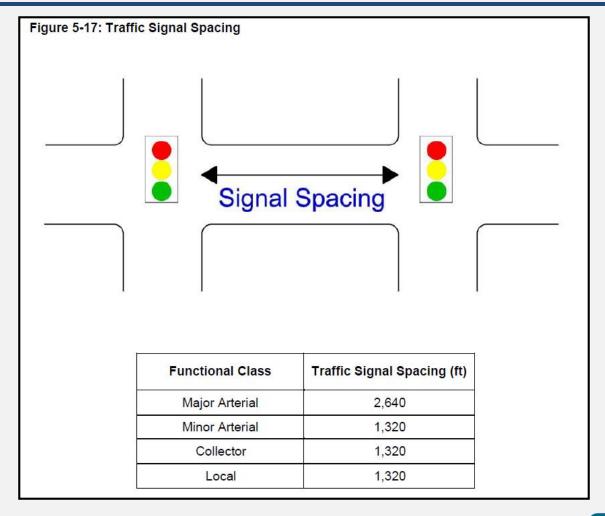

	Driveway Class	Driveway Width (feet)	Minimum Radius Returns (feet)
\int	Low Volume	10 – 24	15
	Medium Volume	24 – 40*	30 (40 Recommended)
	High Volume	40**	**
ſ	Major Volume	**	**

^{*} A 40 ft. driveway is usually marked with two exit lanes of 12 ft. width, with the balance of 16 ft. used for a single, wide entry lane. When a median divider is used, the throat width should be increased to maintain the same lane widths.

**Driveway widths, radii, and lane requirements are determined by a traffic study.

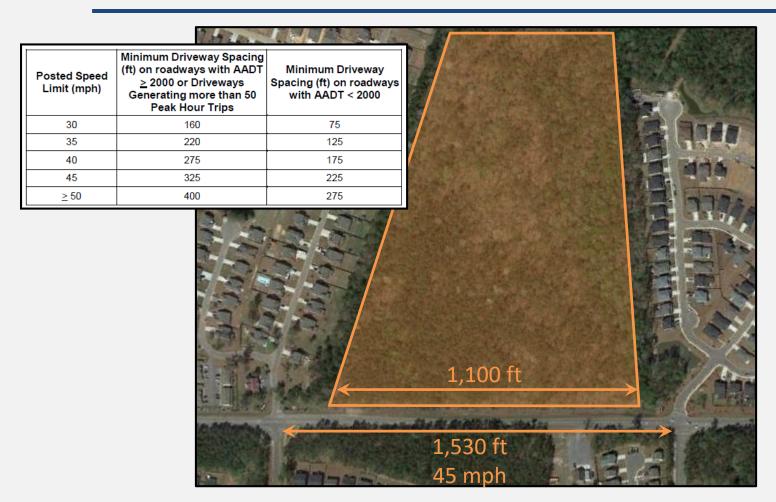
*** For one-way drives, use 14 to 24 feet depending on vehicle usage, width should not encourage two-way movement.

Driveway Throat

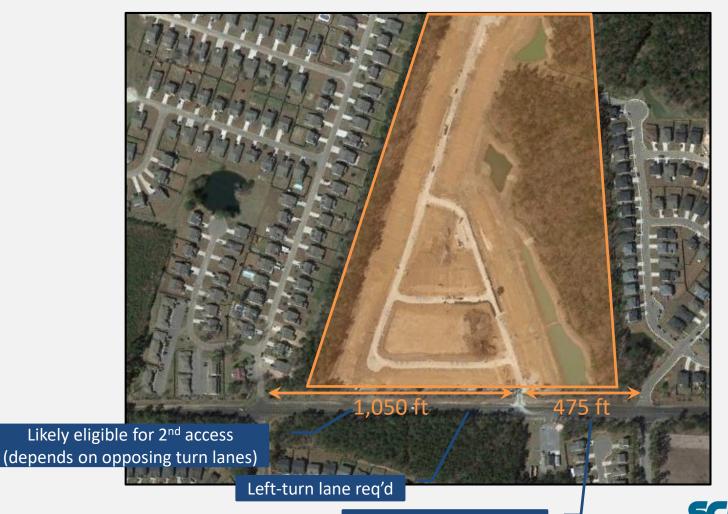


Signalized Access	Throat Length
4 exiting lanes including right-turn lane	≥350 ft, based on traffic engineering study
3 exiting lanes including right-turn lane	250 ft.
2 exiting lanes including right-turn lane	150 ft.

Unsignalized Access	Throat Length
1 entry lane, 2 exit lanes	50 ft.*
1 entry lane, 1 exit lane	30 ft.*


^{*}In no case should the first access point be located within the radius returns of the driveway.

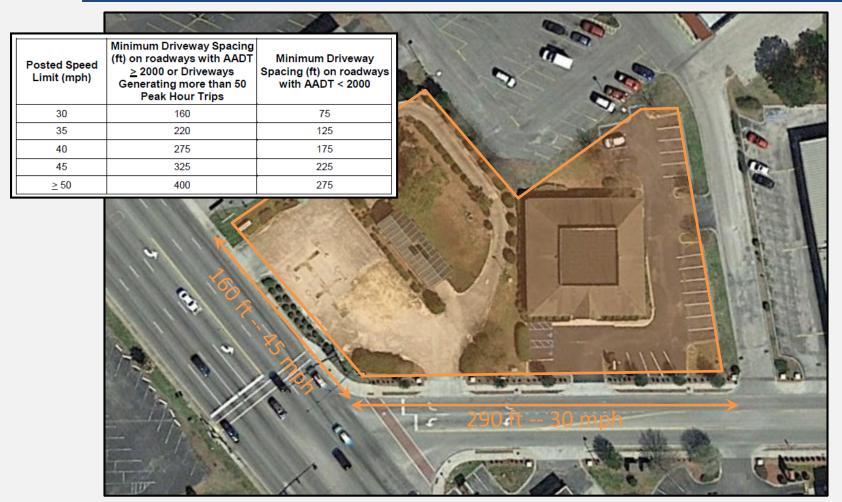
Traffic Signal Spacing

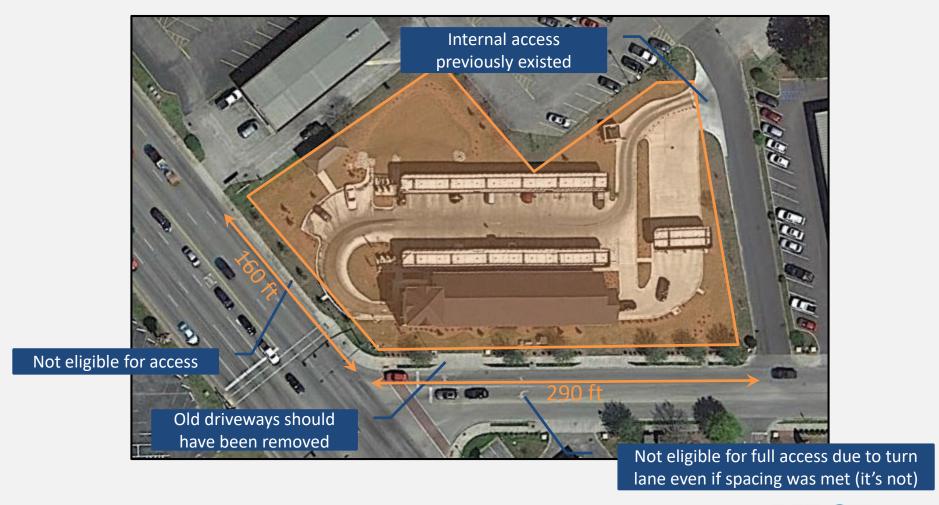


Driveway Q & A

Where can driveway(s) be located?

South Carolina Department of Transportation

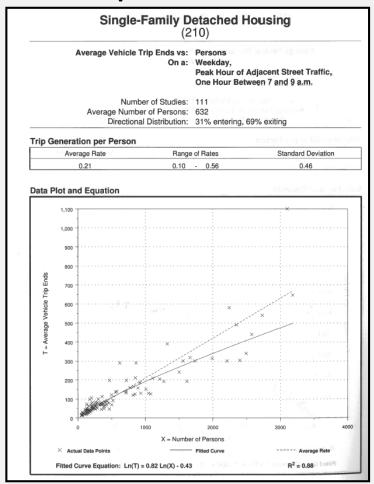



Where can driveway(s) be located?

Driveway alignment

Right-turn lane req'd

Traffic Impact Studies / Analysis


- When is a study required?
 - 100 peak hour trips
 - By the DTE
 - By the local government
- Possibility of limited analysis if <100 trips

Study Steps

- Trip Generation
- Trip Distribution
- Trip Assignment
- Analysis
- Mitigation / Recommendations

Trip Generation

ITE Trip Generation Manual

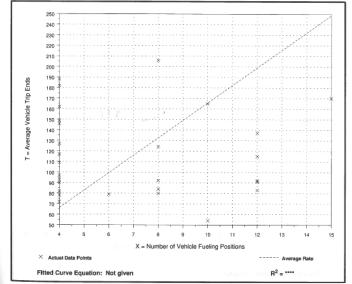
Convenience Market with Gasoline Pumps

Average Vehicle Trip Ends vs: Vehicle Fueling Positions

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 28


Average Vehicle Fueling Positions: 7

Directional Distribution: 50% entering, 50% exiting

Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation	
16.57	5.40 - 47.00	11.34	

Data Plot and Equation

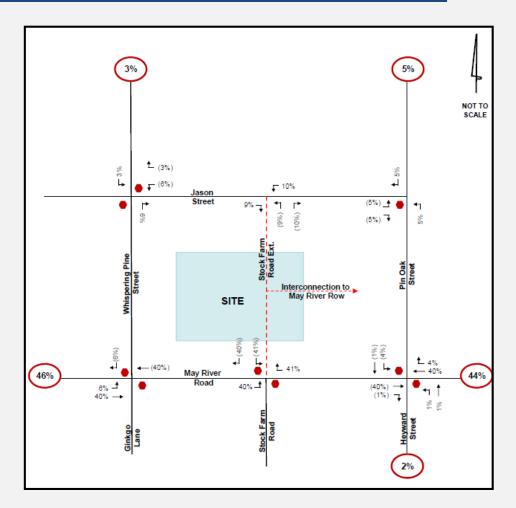
Trip Generation Cheat Sheet

Table 6-10: Guidelines for Determining the Need for an Impact Study

Land Use	100 Peak Hour Trips*
Single Family Home	90 units
Apartments	150 units
Condominiums/Townhouses	190 units
Mobile Home Park	170 units
Shopping Center – Gross Leasable Area (GLA)	6,000 sq. ft.
Fast Food Restaurant With drive-in – Gross Floor Area (GFA)	3,000 sq. ft.
Gas Station with Convenience Store	7 fueling positions
Banks w/drive-in (GFA)	2,000 sq. ft.
General Office	67,000 sq. ft.
Medical/Dental Office	29,000 sq. ft.
Research & Development	71,000 sq. ft.

185,000 sq. ft.

144,000 sq. ft.


Light Industrial / Warehousing (GFA)

Manufacturing Plant (GFA)

^{*}Rates/Equations used to calculate above thresholds are for the P.M. Peak hour of the adjacent street.

Trip Distribution

- Factors
 - Existing travel patterns
 - Development type
 - Market area

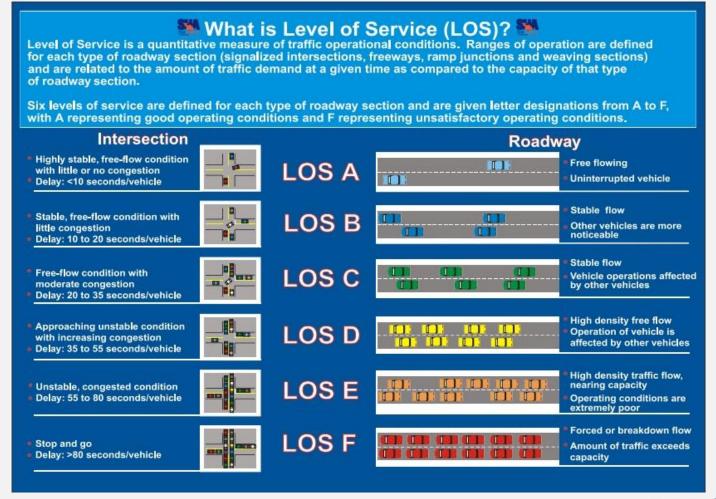
Trip Assignment

Trip Assignment

Traffic Volumes

- Generated (project) volumes
- Known developments
- General background growth
- Build vs. No-Build

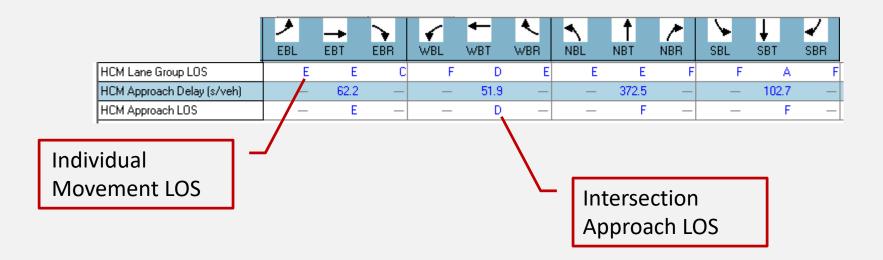
Traffic Analysis

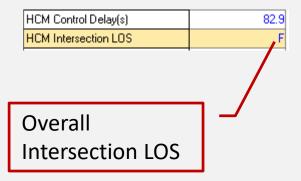

- Capacity
 - Intersection delay / Level of Service
 - Signal phasing
 - Queueing
 - Arterial (mega developments)
- Turn lanes

Level of Service

Signalized Intersec	ctions	Stop-Controlled Intersections		
Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS	
≤ 10	Α	0 – 10	А	
> 10 – 20	В	> 10 – 15	В	
> 20 – 35	С	> 15 – 25	С	
> 35 – 55	D	> 25 – 35	D	
> 55 – 80	E	> 35 – 50	Е	
> 80	F	> 50	F	

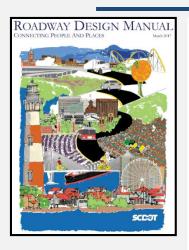
Not uncommon on major roads

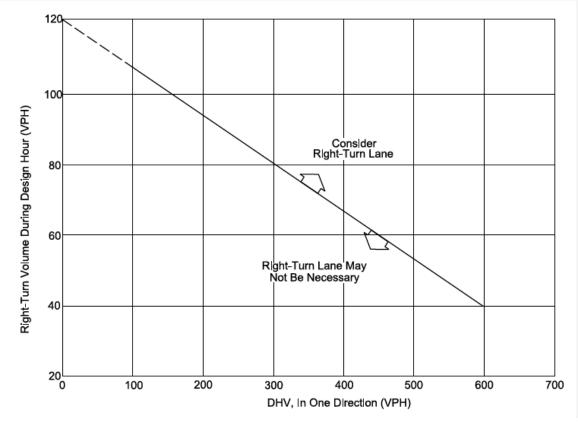

Level of Service Visual



Level of Service Analysis

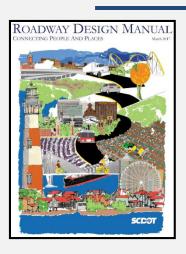
Level of Service Analysis

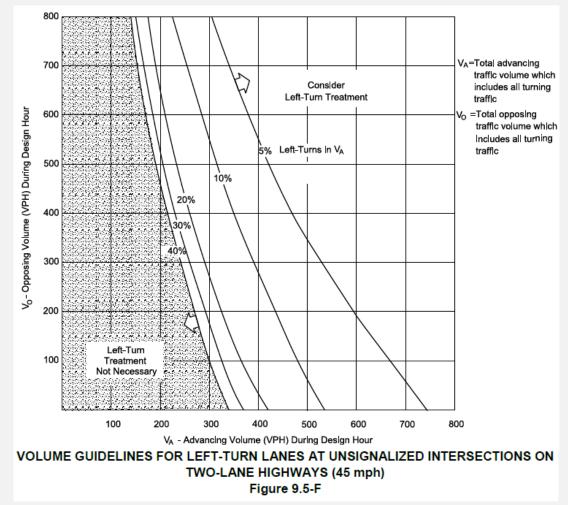




Additional Capacity Analysis

- Signal phasing
 - Determine need for left-turn phase
- Queueing
 - Determine turn lane length at signals & side street stops
- Arterial
 - Determine if road cross section (number of lanes)
 is sufficient


Right-Turn Lane Analysis



GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS
ON TWO-LANE HIGHWAYS
Figure 9.5-A

Left-Turn Lane Analysis

Turn Lane Design

Table 5-8: Right-Turn Lane Storage Lengths

Turning	Percent of Trucks in Turning Volume				
Volume (vph)	0% to 10%	20%	40%	60%	100%
50		Minimu	m length o	f 100 ft	
100					125 ft
150		125 ft	175 ft	175 ft	175 ft
200	150 ft	175 ft	225 ft	225 ft	250 ft
250	200 ft	225 ft	275 ft	275 ft	325 ft
300	250 ft	275 ft	325 ft	350 ft	400 ft
350	300 ft	325 ft	375 ft	425 ft	475 ft
400	350 ft	375 ft	425 ft	500 ft	550 ft

Table 5-9: Left-Turn Lane Storage Lengths

Turning	Percent of Trucks in Turning Volume			•	
Volume (vph)	0% to 10%	20%	40%	60%	100%
50	Minimum length of 150 ft. in Urban Areas				
100	Minimum I	ength of	200 ft. in F	Rural Area	is
150			175 ft	175 ft	175 ft
200		175 ft	225 ft	225 ft	250 ft
250	200 ft	225 ft	275 ft	275 ft	325 ft
300	250 ft	275 ft	325 ft	350 ft	400 ft
350	300 ft	325 ft	375 ft	425 ft	475 ft
400	350 ft	375 ft	425 ft	500 ft	550 ft

REVERSE CURVE TAPER				
Design Speed	Radius	Auxiliary Lane Widths		
(mph)	· (TT)		W=12 ft	
V ≤ 30	300	115	120	
31 - 40	480	145	152	
41 - 50	670	171	179	
51 <u><</u> ∨	840	192	201	

STRAIGHT TAPER				
Design Speed	Auxiliary Lane Widths			
(mph)	W=11 ft	W=12 ft		
V ≤ 30	115	120		
31 - 40	145	150		
41 - 50	170	180		
51 <u><</u> V	200	200		

Traffic Analysis Q & A

Reality

- Adjacent property impacts
 - Medians
 - Turn lanes
- Right-of-Way
- Wetlands
- Utilities
- Grand/protected trees
- Historic property

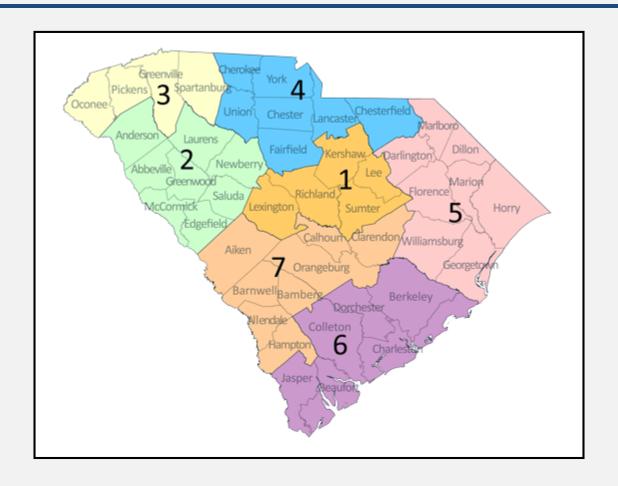
Navigating Reality

- Relocate / eliminate driveways
- Reduce development intensity
- Phase the development
- Choose a different site
- Relocate utilities
- Purchase R/W
- SCDOT allow reduction in design (turn lanes)

Mitigation Philosophy

- Protect the integrity of the road network
- Compare "Build" to "No-Build"
- Require what is reasonable based on development size
- Fair and consistent

Agency Coordination


SCDOT will:

- Provide preliminary feedback on driveways
- Review traffic studies
- Uphold more restrictive city/county requirements, if possible
- SCDOT requests:
 - Require SCDOT concurrence, specifically regarding redevelopment using existing driveways

Additional Q & A

Extra Time Discussion

District Traffic

- Signal maintenance
- Signal timings
- Signal design
- Engineering studies
 - New signals
 - Left-turn phases
 - Speed limits
 - All-way stop
 - Sight distance
 - General safety

- Construction plan review
- Encroachment permit review
- Citizen requests (phone)
- Public meetings
- Preconstruction meetings
- Final inspections
- SHEP/Incident Response
- Emergency events